The Carboxy Terminus of YCF1 Contains a Motif Conserved throughout >500 Myr of Streptophyte Evolution
نویسندگان
چکیده
Plastids evolved from cyanobacteria by endosymbiosis. During the course of evolution, the coding capacity of plastid genomes shrinks due to gene loss or transfer to the nucleus. In the green lineage, however, there were apparent gene gains including that of ycf1. Although its function is still debated, YCF1 has proven to be a useful marker for plastid evolution. YCF1 sequence and predicted structural features unite the plastid genomes of land plants with those of their closest algal relatives, the higher streptophyte algae; YCF1 appears to have undergone pronounced changes during the course of streptophyte algal evolution. Using new data, we show that YCF1 underwent divergent evolution in the common ancestor of higher streptophyte algae and Klebsormidiophycae. This divergence resulted in the origin of an extreme, klebsormidiophycean-specific YCF1 and the higher streptophyte Ste-YCF1. Most importantly, our analysis uncovers a conserved carboxy-terminal sequence stretch within YCF1 that is unique to higher streptophytes and hints at an important, yet unexplored function.
منابع مشابه
The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation
BACKGROUND A growing number of kinases are now known to be controlled by two phosphorylation switches, one on a loop near the entrance to the active site and a second on the carboxyl terminus. For the protein kinase C (PKC) family of enzymes, phosphorylation at the activation loop is mediated by another kinase but the mechanism for carboxy-terminal phosphorylation is still unclear. The latter s...
متن کاملTopology of yeast Ndc1p: predictions for the human NDC1/NET3 homologue.
The nuclear pore complex is the predominant structure in the nuclear envelope that spans the double nuclear membranes of all eukaryotes. Yeasts have one additional organelle that is also embedded in the nuclear envelope: the spindle pole body, which functions as the microtubule organizing center. The only protein known to localize to and be important in the assembly of both of these yeast struc...
متن کاملThe nuclear PP1 interacting protein ZAP3 (ZAP) is a putative nucleoside kinase that complexes with SAM68, CIA, NF110/45, and HNRNP-G.
The targeting of protein kinases and phosphatases is fundamental to their roles as cellular regulators. The type one serine/threonine protein phosphatase (PP1) is enriched in the nucleus, yet few nuclear PP1 targeting subunits have been described and characterized. Here we show that the human protein, ZAP3 (also known as ZAP), is localized to the nucleus, that it is expressed in all mammalian t...
متن کاملEvolution of the Twist Subfamily Vertebrate Proteins: Discovery of a Signature Motif and Origin of the Twist1 Glycine-Rich Motifs in the Amino-Terminus Disordered Domain
Twist proteins belong to the basic helix-loop-helix (bHLH) family of multifunctional transcriptional factors. These factors are known to use domains other than the common bHLH in protein-protein interactions. There has been much work characterizing the bHLH domain and the C-terminus in protein-protein interactions but despite a few attempts more focus is needed at the N-terminus. Since the regi...
متن کاملIdentification and characterization of a NBS–LRR class resistance gene analog in Pistacia atlantica subsp. Kurdica
P. atlantica subsp. Kurdica, with the local name of Baneh, is a wild medicinal plant which grows in Kurdistan, Iran. The identification of resistance gene analogs holds great promise for the development of resistant cultivars. A PCR approach with degenerate primers designed according to conserved NBS-LRR (nucleotide binding site-leucine rich repeat) regions of known disease-resistance (R) gene...
متن کامل